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Abstract: The task of CMOS operational amplifiers (OpAmps) design optimisation is investigated 
in this work. When this task is analysed as a search problem, it can be translated into a multi-
objective optimisation application, in which various OpAmps’ specifications have to be taken into 
account, i.e, GBW (gain-bandwidth product), area, power consumption, phase margin  and 
others. In this work, we  introduce the genetic algorithm search technique and apply it to the 
proposed problem. A novel multi-objective optimisation strategy, based on artificial neural 
networks learning paradigms,  is embedded in our genetic algorithm. We focus on the 
optimisation of four different analog cells, which include low-power operational amplifiers.  
 

1 – Introduction 

 Although constituting only a small part of the total area of modern chips, analog circuitry 

is usually the liming factor of their overall performance [8]. The current trend  towards the 

achievement of low-power, low-area and high-speed analog cells may increase the complexity of 

VLSI analog design, if hard specifications have to be met. This constitutes the major motivation 

of our work.  We address this problem as multi-objective optimisation task, propose a novel 

methodology based on Genetic Algorithms, and applied it to CMOS operational amplifiers design 

optimisation. 

 Genetic Algorithms (GAs) [5] have already been employed in many Computer Aided 

Design (CAD) problems for digital circuits optimisation [3][12]. This search technique can be 

successfully applied to a class of optimisation problems in which the search space is too large to 

be sampled by conventional methods [5]. In the particular context of this application, the GA will 



perform cell sizing,  i.e., search for transistor sizes, biasing currents and compensating 

capacitance values that meet a set of design requirements. As a highly multi-objective problem, 

which involves the sampling of a large search space, a compromise among gain, dissipation, area 

and other factors must be achieved. We devise a new multi-objective optimisation technique to 

handle this task. 

 We test our methodology in two classes of problems: the design of a standard Miller 

Operational Tranconductance Amplifier (OTA) cell and the design of low-power cells. In the 

latter, three different OpAmp’s topologies are used as a test-bed for our optimisation system. The 

results are compared with human-made designs and standard low-power techniques. 

 Four additional sections compose this work: section 2 discusses the problem of OpAmp 

design optimisation and reviews basic concepts related to CMOS transistors operating regions; 

section 3 describes the methodology used by the authors to cope with this problem; section 4 

presents the case studies; and section 5 concludes this work. 

 

2. - OpAmp Design Optimisation 

 Whereas in bipolar based circuits the designer’s creativity is used to the conception of 

different topologies, in the case of CMOS design the creativity is used to set the transistors’ sizes 

of a particular topology, and, as a consequence, select their operating regions [8].  

 OpAmp design optimisation encompasses a large set of specifications or objectives 

(around 20) which should be considered along the design process [8]. Nevertheless, only the most 

important specifications are effectively incorporated into the design methodologies, constituting   

the design plan. It is important to decide beforehand which specifications should take part in the 

design plan, as well as the relative importance of each specification. It is common that, when a 



circuit is optimised to fulfil only one or two specifications,  the other characteristics may become 

nonsense. 

 Human design relies on the solution of a system of equations [6]. However, when many 

objectives are included in the system,  many solutions may exist. It is usually up to the designer 

to assess which solution fits better according to the relative importance of each objective.  

 When cell sizing is performed, each point of the design space consists of the transistors’ 

sizes, biasing current and compensating capacitance of a target circuit topology.  By setting the 

transistors’ sizes and biasing currents, the MOS transistors operating regions are determined. 

MOS transistors may operate in strong, weak and moderate inversion. The strong inversion 

region, in which VGS – VTN is greater than 0.2 Volts, is the most commonly used in analog 

design. The weak inversion region, in which VGS – VTN is around 100 mV, is characterised by the 

low power consumption of the device, being usually employed in micro-power applications. 

Nonetheless, the use of this operating region  also results in the following drawbacks: low speed 

of the device, increase in its area, and reduction of the load driving capacity [8].  Another way to 

characterise the weak (and moderate) inversion region is through the following equation: 

  

Where ?  is proportional to the transistors’ dimensions W/L, UT is the thermal voltage 

(26mV at 300K) and n  takes values between 1 and 1.5, according to some transistor 

manufacturing features. 
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3 -  Optimisation Methodology 

The authors  approach to the OpAmp design optimisation employs Genetic Algorithms 

(GAs), a search technique with the potential to perform an efficient exploration over a large 

design space [3][5].  

 GAs carry out optimisation through biological evolution simulation. Instead of focusing 

on just one potential solution to the problem, they sample a population of potential solutions. A 

population of individuals is initially randomly generated. Each individual is a string that encodes, 

by means of a particular mapping, a potential solution to the problem. The GA performs then 

operations of selection, crossover and mutation over the individuals, corresponding respectively 

to the principles of survival of the fittest, recombination of genetic material and mutation 

observed in nature. The selection step is probabilistic, but it favours individuals which have been 

assigned higher fitness indexes, in an evaluation step performed beforehand. The fitness is a 

scalar measure of the performance of an individual according to the problem specification. The 

crossover operator splices the contents of two randomly chosen strings, producing two new 

individuals or offsprings.  The mutation operator changes a particular string position at random 

and it is applied with a low probability [5]. The optimisation process is carried out through the 

generation of successive populations until a stop criteria is met. The basic GA flow is illustrated 

in Figure 1. Since genetic algorithms are stochastic, many executions are necessary to achieve 

significant results. 

 Following, we provide a description of the individual  representation and evaluation 

methods used by the genetic algorithm to tackle the problem at hand. 

3.1 – Representation 

 In the particular domain of our problem, each genetic algorithm string (also called 

chromosome) encodes an operational amplifier by means of a particular mapping. The 



representation thus  refers to the way this mapping is performed. A sized CMOS operational 

amplifier can be characterised by a list of real numbers representing transistors sizes, biasing 

current, and, if it is the case, a compensating capacitance. Each OpAmp feature is represented in a 

chromosome integer string, so that each string element serves as pointer to the actual OpAmp 

feature value. This representation is illustrated in Figure 2.  

 The functions fi, shown in this figure, perform a simple conversion, whose general 

expression is given by: 

 

 In the above expression, y and x are the actual value taken by the OpAmp feature  and the 

value of the associated string position, respectively. While each string position can assume N 

different integer values, each amplifier feature is constrained to values between Cmín and Cmáx. 

These constraints are set according to the referred feature and to the technology being used. For 

instance, if the feature is a particular transistor width, Cmín and Cmáx will stand for the minimum 

width allowed by the technology, Wmín,  and the maximum width chosen by the user, Wmáx. The 

constants k1 and k2 are set in order to make the conversion between x and y.  

 One of the most important aspects in choosing a particular representation is the amount of 

previous designer knowledge used in it. Our representation requires the designer to supply 

minimum and maximum constraints, Cmín and Cmáx, for each amplifier feature. Furthermore, in 

order to avoid meaningless OpAmps, the differential input pairs and current mirrors are also 

constrained to have the same sizes, as illustrated in Figure 2. If compared to other evolutionary 

electronic applications [6], our system uses less amount of previous knowledge. 

)2(],[);1,...,1,0(,

:

1
2

máxmín CCyNxk
k
x

y

f

?????

???



3.2 – Evaluation 

The main challenge of applying genetic algorithms or any other optimisation technique to 

this problem is its multi-objective nature. Multi-objective optimisation concerns the need to 

integrate vectorial performance measures with the inherently scalar way in which most 

optimisation techniques rewards performance. Because genetic algorithms require scalar fitness 

information on which to work, a scalar transformation of the objective vectors is always 

necessary [4].  

CAD problems of electronic circuits  are usually intrinsically multi-objective, being 

artificially decomposed in single-objective optimisation problems. Recent ly, some GA based 

tools have been produced to tackle multiple objective problems in the digital domain: the 

software EXPLORER [3] is a tool used to minimise chip layout area, deviation from a target 

aspect ratio, routing congestion and maximum path delay in VLSI cells.  

No standard technique to multi-objective optimisation  has been achieved so far; surveys 

on this issue can be found elsewhere [4]. After testing some standard methods, the authors 

developed a new one that suited better to OpAmps’ optimisatio n. As it will be observed, our 

method is based on artificial neural networks learning algorithms [2].  

 Given a population of individuals, each one encoding an operational amplifier in the way 

shown previously, a measure of performance or fitness is assigned to each individual in the 

following way: 
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 According to the above equation, the fitness is computed by a weighted sum, where w is a 

weight vector, n is the number of objectives and Fnorm is the normalised fitness vector. This 

vector is defined by: 

  

Fi is the actual score of an individual with respect to a particular objective i, whereas the 

denominator of the above equation represents the average fitness  over all the individuals of the 

population  with respect to the same objective. This normalisation is accomplished to account for 

the fact that the objectives are measured in different units (decibels, Hertz, etc)  and all of them 

must have the same influence in the  fitness expression. 

 The main problem of this approach is the one of setting the weights’ values. It is desirable 

to use a strategy in which the weights are dynamically updated according to the level of 

satisfaction of each objective during evolutionary search; and also to take into account the user’s 

specifications (design plan)  for each particular objective. 

 Based on these guidelines, the following weight updating equation has been formulated: 

 

 The above equation uses an additional temporal index t, which points to a particular 

generation of individuals. Hence, wi,t+1 is the next value of the weight associated to objective i.  It 

is computed using its present value, wi,t , and an error measure ei,t. This equation is based on the  

Backpropagation learning algorithm for  Artificial Neural Networks (ANN) [2]. The term ?  used 

in equation 5 can take values from 0 to 1, and  will balance the contribution of the error and of the 

current weight value to the weight update. This term is analogous to the momentum  term used in 
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the Backpropagation algorithm, which is related to the stability of the learning process [2]. The 

error ei,t  provides a  measure of the overall system performance for the particular objective i in a 

particular instant t, and it is computed by: 

 

Where Useri  represents the user specification for objective i. Therefore, the error is 

calculated by the difference between the average value for objective i over all individuals and the 

user specification.  

All the weights are initialised with an equal arbitrary absolute value: if the correspondent 

objective needs to be minimised, the weight must take a negative initial value, and a positive 

value if the correspondent objective needs to be maximised.  Through experimentation, we have 

found out that a value of ? =0.7  (Equation 5) produces better results. 

  

4 – Case Studies 

 We describe two classes of experiments in this section: the design optimisation of a Miller 

OTA cell [8] and of low power cells [9][11], respectively. The SMASH simulator [10] has been 

used to evaluate the OpAmps’ performance. 

 

4.1 – Miller CMOS OTA 

 The Miller OTA is a two stage amplifier whose compensation capacitance introduces the 

Miller effect, and presents a low output impedance for most of its frequency range [8]. We apply 

a genetic algorithm together with the multi-objective strategy defined previously to optimise gain, 
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GBW, power consumption, area and phase margin. These performance statistics have been 

measured through simulation by small signal and operating point analysis.   

The genetic algorithm manipulates the transistors’ sizes, biasing current and compensating 

capacitance through the chromosome representation shown in section 3.1. The values of k1 and k2 

(Equation 2)  define low and upper boundaries for the variables manipulated by the genetic 

algorithm. The transistors’ dimensions, W and L, may take values between 5? m and 105? m with 

a step of 1? m (using k1 = 1 and k2 = 5). The biasing current, IB , may take values between 1.5?A 

and 2.5?A with a step of 0.01? A (using k1 = 100 and k2 = 1.5). Finally, the compensating 

capacitance CP may assume values between 1pF and 6pF, with a step of 0.05pF (using k1 = 20 

and k2 = 1).  

As described in section 3.2, the multi-objective evaluation strategy uses a vector of 

objectives’ specifications supplied by the user. For this particular  case, the specifications have 

been set to: minimum of 80dB DC gain, minimum GBW of 2MHz, maximum power consumption 

of 200?W; maximum area of 5,000?m2 1; and minimum phase margin of 70o.  Table 1 provides a 

comparison between a human made design [8] and the best design obtained by the gene tic 

algorithm. The schematics of these two cells are shown in Figure 3. 

 From Table 1, it can be seen that the genetic algorithm arrived at an OpAmp with 

performance statistics close to the specified values, which were deliberately set hard to be 

achieved simultaneously. Comparing to the hand made design, we can observe that they present 

similar gain and GBW statistics. (The GA procedure could be modified in order to meet the gain 

and GBW specification but disregarding other specifications).  However, the OpAmp synthesised 

by the GA features less than half of the dissipation observed in the hand made design, at an 

                                                                 
1 The OpAmp area has been estimated in a simplified way, just by  computing (? W.L + 1,000CP) over all transistors. 
The second term takes into account the influence of the compensating capacitance in the  area. 



expense of a larger area. This is due to the design plan chosen in this particular case. The phase 

margin achieved by the GA cell is lower than the human made one. If stability is critical in the 

OpAmp application, the phase margin can be further improved by increasing the Miller 

capacitance, thus affecting the OpAmp area total (? W.L + 1,000CP). The slew-rate has not been 

taken into account as an objective of the genetic algorithm, because its measure requires time 

consuming transient analysis. Nevertheless, the obtained values (2.05V/? s and -1.82V/? s) 

compare well with  the hand made  ones, taking into account that the GA cell dissipates much less  

than the human made counterpart.  

Features Human Made GA 
Design Space ----------------------- 1024 
Gain 71.2dB 72.7dB 
GBW 2MHz 1.6MHz 
Slew-Rate 3.78 V/? s; -1.56V/? s 2.05V/? s;-1.82V/? s 
IB 2.50 ?A 2.31?A  
CP 1 pF 1.15 pF 
Power 527.8 ?W 237.9 ?W 
Area 1,929?  m2 3,020 ? m2 
Phase Margin 65o 55o 
Technology 3 ?  n-well 3 ?  n-well 
RL 100k 100k 
CL 10pF 10pF 

Table 1 – Comparison between a hand-made operational amplifier [6] and one synthesised by the 
Genetic Algorithm. 
 

 In this case study, the design search space is constituted of 1024 possible OpAmps (Table 

1). Nonetheless, the genetic algorithm sampled only 90000 cells, by running 10 executions with a 

population of size 30 along 300 generations. This illustrates one of the most important features of 

a genetic algorithm, which is its efficiency in sampling large search spaces [5]. 



 Figure 3 depicts the hand made and the GA cells.  Transistor pairs (T1,T2), (T3,T4) and 

(T7,T8) have been constrained to have equal sizes. It has been verified that the GA design 

followed the hand made in these respects: 

1. High value of (W/L)6, since the gain is proportional to the transconductance of transistor T6, 

which is proportional to W/L  [8];  

2. (W/L)1 > 1, since the gain is also proportional to the transconductance of transis tor  T1; 

3. High value of (W/L)5, which improves the output swing; 

   The GA arrived at these design strategies without any kind of previous knowledge being 

supplied to the system, except the equal size constraint imposed to the differential input pairs and 

current mirrors transistors. This illustrates the GA’s potential of rediscovering human made 

design rules. However, in order to clearly demonstrate its potential, these constraints would have 

to be dismissed and verified if the GA is able to reach such design rule.  

The curves of Figure 4 show the average values taken by the objectives included in the 

design plan along the genetic algorithm execution. It can be observed that the GA  tries to 

minimise the area and maximise the phase margin, while trying to keep the other objectives 

around the specified design plan.  

4.2 – Low-Power OpAmp Design 

 Our experiment in low-power design have focused on three topologies: class A 

operational amplifier, operational transconductance amplifier (OTA) with simple output, and 

OTA with Cascode output. The representation and evaluation were similar to the one used for the 

Miller OTA design. 

Concerning the representation, the transistor dimensions, W and L, may take values 

between 2? m and 102? m with a step of 1? m (using k1 = 1 and k2 = 2) for the OTAs’ cells; and  



values between 3? m and 103? m with a step of 1? m (using k1 = 1 and k2 = 3) for the class A 

OpAmp. The difference is due to the fact that distinct technologies are used.  The biasing current 

IB may take values between 0.01?A and 1?A with a step of 0.01? A (using k1 = 100 and k2= 0.01). 

Finally, the compensating capacitance of the class A OpAmp, CP, may assume values between 

1pF and 6pF, with a step of 0.05pF (using k1 = 20 and k2 = 1).  

The fitness evaluation function has been designed to optimise gain, GBW, output bias, 

power consumption, area and phase margin. The design plan (Minimum gain, Minimum GBW; 

Maximum output bias voltage; Maximum power consumption; Maximum area; Minimum Phase 

Margin)  has been set to: (120 dB ; 300 kHz; 0.1 V; 8?W; 7,000?m2; 65o) for the class A 

OpAmp; (80dB, 200 kHz ; 0.05 V; 10?W; 5,000?m2 ; 70o ) for the simple OTA; and (120dB, 200 

kHz ; 0.05 V; 10?W; 15,000?m2 ; 70o ) for the cascode OTA. Contrasting to the Miller OTA 

experiments, the measures have now been carried out in an open- loop configuration. Therefore, 

another objective had to be included, the minimisation of the absolute value of the bias output 

voltage 2. The level 5 CMOS transistor model, which simulates more accurately the weak 

inversion region, has been used in these experiments.  

Table 2 displays the performance statistics of the best amplifiers obtained in these 

experiments; and Figures 5, 6 and 7 depict the schematics of the best Class A, OTA and Cascode 

OTA cells respectively. 

Typical low power class A operational amplifiers  found in the literature [1][9]  present 

the  following  average statistics: 115 dB gain,  gain-bandwidth product of 170 kHz , phase 

margin above 45o,  slew -rate of 120 mV/? s, area around 20000? m2, power consumption around 

5?W and a compensating capacitance of 2 pF.  Our design plan sought for a better balance 

                                                                 
2  A voltage controlled source was used to remove bias in the Miller OTA experiments; Refer to [8] for details. 



between dissipation and area, and the best cell performance is shown in  the first column of Table 

2 (schematics shown in Figure 5).  It is a common low-power design strategy to place transistors 

T1, T2 and T6 in weak inversion, in order to improve the gain. In contrast, the synthesised cell 

uses T1 and T2 in moderate inversion, using T6 in strong version (Equation 1). It can also been 

observed that the amplifier  bandwidth is increased as a result of the zero introduced  by the 

active resistor implemented by transistors T9 and T10. 

Features Class A Simple OTA Cascode OTA 
Design Space 1032 1034 1044 
Gain 140.6 dB 63.6 dB 88.5 dB 
GBW 1MHz 200 kHz 150 kHz 
Bias Output 9.4 mV 1.3 mV 0.85 mV 
Offset -2.49 mV 34.6 nV 3.37 nV 
Slew-Rate 210mV/? s; 

-232mV/? s 
100mV/? s; 
-80mV/? s 

89mV/? s; 
-76mV/? s 

IB 0.98 ?A 0.10 ?A  0.16 ?A 
CP 2.1 pF ------------- ------------ 
Power 14.1 ?W 1.4 ?W 8.65 ?W 
Area 9,029 ? m2 3,343 ? m2 7,189 ? m2 
Phase Margin 65o 65o 57o 
Technology 3 ?   Marin 1.2 ?  AMS 1.2 ?  AMS 
CL 3 pF 3 pF 10 pF 

Table 2 – Results of the synthesis of three low-power operational amplifiers: Class A,  Simple 
OTA and Cascode OTA. 

 
Typical low power OTA cells found in the literature [1][6][9] present the  following 

average statistics: 65dB gain,  gain-bandwidth product of 300kHz , phase margin of 60o,  slew -

rate of 120mV/? s, area around 5000?m2  and a power consumption around 5 ?W. The GA arrived 

at a cell with smaller area and power consumption, whilst keeping comparable values for the 

other statistics. It is a  conventional strategy to place the input differential pair in weak inversion. 

The cell designed by the GA has the input pair and transistor T6 in weak inversion. This is 

expected, as the gain is also proportional to the transconductance of T6 (the higher W/L the 

higher the transconductance [8]). 



Typical low power Cascode OTA cells found in the literature [1][6][7][9] present the  

following statistics : gain around 100 dB,  gain-bandwidth product of 100 kHz , phase margin of 

70o,  slew-rate of 50 mV/? s, area around 10000? m2  and a power consumption around 5 ?W. The 

GA cell achieved better GBW, slew rate, and area statistics, at the expense of slightly worse 

values for gain, phase margin and power consumption. In contrast with usual low-power design 

guidelines for this kind of cell, the differential input pair is not working in weak inversion in this 

particular case. 

 

5 – Conclusions  

 We presented a tool that performs operational amplifier sizing using minimal human 

knowledge. Particularly, we focused on low-power analog cells, which is an important industrial 

trend. In order to tackle this multi-objective optimisation problem, we applied genetic algorithms 

together with a new strategy for  multiple-objective assessment. Given a design plan supplied by 

the user, this tool performs an efficient search over the design space. Our methodology was able 

to rediscover a human made Miller OTA design, enhancing it by reducing the power 

consumption. In the case of Class A and Cascode OTA cells, the design plan consisted of finding 

cells  with balanced area and dissipation statistics. Finally, a simple OTA cell has been achieved 

that is better both in area and dissipation than conventional designed ones. 
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